During blood feeding haematophagous arthropods inject into their hosts a cocktail of salivary proteins whose main role is to counteract host haemostasis, inflammation and immunity. However, animal body fluids are known to also carry miRNAs. To get insights into saliva and salivary gland miRNA repertoires of the African malaria vector Anopheles coluzzii we used small RNA-Seq and identified 214 miRNAs, including tissue-enriched, sex-biased and putative novel anopheline miRNAs. Noteworthy, miRNAs were asymmetrically distributed between saliva and salivary glands, suggesting that selected miRNAs may be preferentially directed toward mosquito saliva. The evolutionary conservation of a subset of saliva miRNAs in Anopheles and Aedes mosquitoes, and in the tick Ixodes ricinus, supports the idea of a non-random occurrence pointing to their possible physiological role in blood feeding by arthropods. Strikingly, eleven of the most abundant An. coluzzi saliva miRNAs mimicked human miRNAs. Prediction analysis and search for experimentally validated targets indicated that miRNAs from An. coluzzii saliva may act on host mRNAs involved in immune and inflammatory responses. Overall, this study raises the intriguing hypothesis that miRNAs injected into vertebrates with vector saliva may contribute to host manipulation with possible implication for vector-host interaction and pathogen transmission.

MicroRNAs from saliva of anopheline mosquitoes mimic human endogenous miRNAs and may contribute to vector-host-pathogen interactions / Arcà, Bruno; Colantoni, Alessio; Fiorillo, Carmine; Severini, Francesco; Benes, Vladimir; Di Luca, Marco; Calogero, Raffaele A; Lombardo, Fabrizio. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 9:1(2019), pp. 1-16. [10.1038/s41598-019-39880-1]

MicroRNAs from saliva of anopheline mosquitoes mimic human endogenous miRNAs and may contribute to vector-host-pathogen interactions

Arcà, Bruno
Primo
;
Colantoni, Alessio
Secondo
;
Fiorillo, Carmine;Lombardo, Fabrizio
Ultimo
2019

Abstract

During blood feeding haematophagous arthropods inject into their hosts a cocktail of salivary proteins whose main role is to counteract host haemostasis, inflammation and immunity. However, animal body fluids are known to also carry miRNAs. To get insights into saliva and salivary gland miRNA repertoires of the African malaria vector Anopheles coluzzii we used small RNA-Seq and identified 214 miRNAs, including tissue-enriched, sex-biased and putative novel anopheline miRNAs. Noteworthy, miRNAs were asymmetrically distributed between saliva and salivary glands, suggesting that selected miRNAs may be preferentially directed toward mosquito saliva. The evolutionary conservation of a subset of saliva miRNAs in Anopheles and Aedes mosquitoes, and in the tick Ixodes ricinus, supports the idea of a non-random occurrence pointing to their possible physiological role in blood feeding by arthropods. Strikingly, eleven of the most abundant An. coluzzi saliva miRNAs mimicked human miRNAs. Prediction analysis and search for experimentally validated targets indicated that miRNAs from An. coluzzii saliva may act on host mRNAs involved in immune and inflammatory responses. Overall, this study raises the intriguing hypothesis that miRNAs injected into vertebrates with vector saliva may contribute to host manipulation with possible implication for vector-host interaction and pathogen transmission.
2019
mosquito saliva; mirnas; anopheles coluzzii; vector-host-pathogen interactions; malaria
01 Pubblicazione su rivista::01a Articolo in rivista
MicroRNAs from saliva of anopheline mosquitoes mimic human endogenous miRNAs and may contribute to vector-host-pathogen interactions / Arcà, Bruno; Colantoni, Alessio; Fiorillo, Carmine; Severini, Francesco; Benes, Vladimir; Di Luca, Marco; Calogero, Raffaele A; Lombardo, Fabrizio. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - 9:1(2019), pp. 1-16. [10.1038/s41598-019-39880-1]
File allegati a questo prodotto
File Dimensione Formato  
Arcà_MicroRNAs_2019.pdf

accesso aperto

Tipologia: Versione editoriale (versione pubblicata con il layout dell'editore)
Licenza: Creative commons
Dimensione 2.72 MB
Formato Adobe PDF
2.72 MB Adobe PDF

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11573/1240594
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact